ar X iv : m at h - ph / 0 60 80 46 v 2 2 7 D ec 2 00 7 A MULTI - DIMENSIONAL LIEB - SCHULTZ - MATTIS THEOREM

نویسندگان

  • BRUNO NACHTERGAELE
  • ROBERT SIMS
چکیده

For a large class of finite-range quantum spin models with half-integer spins, we prove that uniqueness of the ground state implies the existence of a low-lying excited state. For systems of linear size L, with arbitrary finite dimension, we obtain an upper bound on the excitation energy (i.e., the gap above the ground state) of the form (C log L)/L. This result can be regarded as a multi-dimensional Lieb-Schultz-Mattis theorem [14] and provides a rigorous proof of the main result in [8].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 60 80 46 v 1 1 8 A ug 2 00 6 A MULTI - DIMENSIONAL LIEB - SCHULTZ - MATTIS THEOREM

For a large class of finite-range quantum spin models with half-integer spins, we prove that uniqueness of the ground state implies the existence of a low-lying excited state. For systems of linear size L, of arbitrary finite dimension, we obtain an upper bound on the excitation energy (i.e., the gap above the ground state) of the form (C log L)/L. This result can be regarded as a multi-dimensi...

متن کامل

ar X iv : 0 70 7 . 03 46 v 1 [ m at h - ph ] 3 J ul 2 00 7 THE ONE - DIMENSIONAL SCHRÖDINGER - NEWTON EQUATIONS

We prove an existence and uniqueness result for ground states of one-dimensional Schrödinger-Newton equations.

متن کامل

ar X iv : m at h - ph / 0 20 80 10 v 2 7 A ug 2 00 2 ALGEBRAIC INVARIANTS , DETERMINANTS , AND CAYLEY – HAMILTON THEOREM FOR HYPERMATRICES . THE FOURTH – RANK CASE

We develop a method to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.

متن کامل

ar X iv : m at h - ph / 0 60 20 63 v 2 1 2 M ar 2 00 7 Abelian connection in Fedosov deformation quantization . I . The 2 - dimensional phase space

General properties of an Abelian connection in Fedosov deformation quantization are investigated. Definition and criterion of being a finite formal series for an Abelian connection are presented. A proof that in 2-dimensional (2-D) case the Abelian connection is an ifinite formal series is done.

متن کامل

ar X iv : 0 70 7 . 40 46 v 1 [ m at h . A G ] 2 7 Ju l 2 00 7 CLIFFORD ’ S THEOREM FOR COHERENT SYSTEMS

Let C be an algebraic curve of genus g ≥ 2. We prove an analogue of Clifford’s theorem for coherent systems on C and some refinements using results of Re and Mercat.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007